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Introduction 

The aim of protein multiple sequence alignment (MSA) is to assemble amino acid sequences in 

alignments that reflect their biological relationship, whether evolutionary, structural, functional, or a 

combination of the three (Notredame 2007). MSA is utilized in the analysis of functionally similar 

proteins to identify regions of homology or common motifs, or to identify putative motifs in newly 

characterized sequences, providing a hint towards biological function (Aiyar 2000).  

Pairwise alignments – alignments of two amino acid sequences – usually use dynamic programming 

to arrive at a mathematically optimal alignment based on estimates of evolutionary rates of mutation and 

conservation given in the PAM and BLOSUM matrices, including penalties for insertions and deletions of 

amino acid residues that cause divergence between the sequences. Extrapolating these methods of 

dynamic programming to more than a few sequences at a time is computationally expensive and 

infeasible (Wang and Jiang 1994, Elias 2006, Pei 2008). Given the immense computational demands, a 

series of Multiple Sequence Alignment (MSA) programs have been created to speed the process as well 

as derive more accurate estimates employing various techniques of heuristics; programmed algorithms 

designed to arrive at reasonable but inexact estimates of homology and alignment between sets of 

sequences.   

This report aims to give an overview of the important considerations when choosing a program for 

MSA in order to help the biologist navigate the broad differences between algorithms. I will begin by 

outlining some recent developments in the field, and subsequently focus on illuminating the different 

benchmarks used to evaluate the performance of MSA programs. I will end the report with individual 

analysis of each MSA program’s strengths and drawbacks.  
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Different Approaches 

Extrapolating the methods of dynamic programming in pairwise alignment to more than a few 

sequences at a time is computationally expensive and infeasible (Wang and Jiang 1994, Elias 2006, Pei 

2008). Mathematically, for k protein sequences of n amino acids each, the computational capacity and 

space requirements would be nk, which quickly approaches impossibility for increasing numbers of ever-

longer sequences (Brutlag 2007). As a result, deriving evolutionary trees from sequence relationships is 

an approximate process. Given that rarely are sequences from evolutionary ancestors available, all 

phylogenetic relationships are inferred from homologies in present-day sequences, also known as 

observed taxonomic units (OTUs). Because alignments can be evolutionary, structural, functional, or a 

combination of the three, the role of the biologist is critical and leads to much more refined and 

biologically-relevant results than fully automated algorithms. Therefore a major goal in developing new 

tools for MSA has been to increase the biological significance of results through the incorporation of any 

and all additional information available, especially in order to improve the alignment of sequences whose 

similarity is below the “Twilight Zone” of <20% identity (Pei 2008).  

Most MSA packages employ the progressive algorithm first popularized by Clustal: this algorithm 

involves first estimating a guide tree from the given sequences based on sequence similarity, then 

progressively aligning sequences along each level of the guide tree using pairwise alignment. 

Considerable effort has been put into developing accurate scoring schemes for the pairwise alignment 

algorithm, and current MSA programs utilize one of two types of scoring schemes: matrix- or 

consistency-based. The former method takes into account a more limited set of data, only considering 

residues within the immediate locale of the position being aligned, while consistency-based methods 

incorporate a wider dataset, including the alignment with third-sequences not in the immediate pair being 

compared (see Figures 4-5). Matrix-based alignment is used by programs such as ClustalW (Thomson 

1994) and MUSCLE (Edgar 2004), while consistency-based alignment was developed in T-Coffee 

(Notredame 2000) and expanded in more recent programs such as PCMA (Pei 2003), ProbCons (Do 

2005), MUMMALS (Pei 2006), and MAFFT (Katoh 2005) (reviewed in Notredame 2007). As will be 

discussed in more detail below, consistency-based methods are generally shown to be more accurate, but 

take N times longer, where N is the number of amino acid sequences to be analyzed (Blackshields 2006).  

Furthering the goal of biological accuracy, a new suite of programs has emerged that incorporates 

structural as well as sequence information in MSA. These include PRALINE and SPEM as well as 

Expresso, an update to the popular consensus-based method TCoffee. Nevertheless, the venerable choices 

for protein MSA, such as ClustalW, TCoffee, and ProbCons, still prove popular especially when 

structural information cannot be found.   
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Choosing a Program 

Perhaps most important from the point of view of most users of MSA programs are the considerations 

in choosing among the multitude of algorithms currently available. The three main considerations are 

biological accuracy of alignments, computational time, and computational memory usage. Given the ever-

increasing capacity of modern computers, usually biological accuracy is the primary concern. This is not 

straightforward to measure; benchmark suites have been developed that test accuracy of predictions 

against a library of families of known homology based on 3D structure. Top-scoring MSA programs are 

led by ProbCons, followed by MAFFT, MUSCLE, and TCoffee, but the exact distribution differs based 

on similarity of test sequences as well as the benchmark dataset used. Newer versions of MAFFT include 

consistency-based scoring and rival the accuracy of ProbCons (Edgar and Batzoglou 2006).  

Nevertheless, the statistically “best” program is rarely optimal in every single circumstance. Within 

benchmarks, programs based on different algorithms show distinct strengths in particular areas: though 

ProbCons outperforms Clustal W by an average of 5%, on certain tests ClustalW outperforms ProbCons 

by 9%. Because it is as of yet not possible to predict the method that will work best on a given set of 

sequences, it is generally  suggested that multiple programs based on different algorithms be used, and the 

results compared for discrepancies (Edgar and Batzoglou 2006, Pei 2008). Similarly, in evaluating the 

performance of MSA programs, different types of benchmarking software should be used in order to 

present diverse challenges. 

Though earlier dismissed, demands of computational power further highlight the need for different 

and diverse MSA programs: while consensus-based programs show very high accuracy, they are 

computationally intensive. Therefore, highly accurate programs such as TCoffee and ProbCons often are 

unable to handle more than 100 sequences without memory problems on typical computers (Edgar and 

Batzoglou 2006). In comparison, MAFFT and MUSCLE are high-throughput methods that can handle 

large sets of sequences with accuracies comparable to ClustalW: the progressive algorithm MUSCLE-p 

can align 5000 sequences of average length 350 in 7 minutes on an average desktop computer (Edgar 

2004). 

Benchmarking methods for Multiple Sequence Alignment 

When MSA programs were first developed, limited availability of accurate information as well as 

processing power meant performance of algorithms was demonstrated based on a small number of 

example sequences, called gold standards. Given that the benchmark tests are freely available, developers 

of new programs could specifically tune their programs to attain artificially high scores, reducing the 

test’s applicability. Newer programs such as BaliBASE (Thompson 1999) incorporate larger datasets, 

making it far more difficult for developers to target the performance of their algorithms. Some programs 
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use available 3D structural data to test sequence alignments (HOMSTRAD – Mizuguchi 1998, OxBench 

– Raghava 2003, PREFAB – Edgar 2004), while others have employed probalistic models to simulate 

evolution of sequences and generate test MSAs on the fly (Lassmann and Sonnhammer 2002). Some 

databases are manually refined (BAliBASE, HOMSTRAD), while others are predominantly automated 

(PREFAB, OxBench).A short review of common benchmarking methods aimed primarily at global 

sequence alignment is included below. To evaluate local alignment in MSA programs, IRMBASE 

(Subramanian 2005, not discussed) is often utilized. 

BAliBASE 

BAliBASE was one of the first large-scale benchmarks developed specifically for testing and 

comparison of multiple sequence alignment programs. The alignments are based on protein 3D structure 

superposition, and are “manually refined” to ensure a higher alignment quality than purely automated 

methods (Thompson 2005). Only reliably aligned regions are annotated as core blocks; distant regions 

with limited structural homology are discarded as their inclusion would require arbitrary alignment that 

would lead or be construed as bias (Thompson 1999). The original BAliBASE was divided into four 

references, but this has since expanded to eight, reflecting the increased quantity and complexity of 

information. Each reference contains alignments organized in order represent real MSA problems faced 

by biologists (cf. Table 1). Version 3.0 of BaliBASE also expanded the number of sequences from 1444 

to 6255 and provided a more user-friendly interface for the program (Thompson 2005). A past criticism 

of BaliBASE was the absence of full-length sequences and thus bias in favor of global alignment methods 

(Lassmann and Sonnhammer 2002), but this has since been rectified: BaliBASE now includes full-length 

sequences (Blackshields 2006). The software also includes a semi-automatic update protocol, allowing 

the program to keep pace with new data on protein sequences and families as they become available 

(Thompson 2005).  

Most recently, the developers of BAliBASE have added a ninth reference set, to aid in the 

performance evaluation of alignments of short unstructured motifs, termed linear motifs (Perrodou 2008). 

The majority of protein multiple sequence alignment programs are designed for the identification and 

alignment of globular protein domains; longer lengths of sequences with predicted functions based on 

structure and amino acid residues. Their performance is benchmarked using 3D structure 

superpositioning. These programs are not ideal for the analysis of non-globular proteins without a defined 

structure, or unstructured parts of larger proteins; while unstructured regions can be simple linkers 

between peptide domains, in which case the amino acid sequence doesn’t matter, often unstructured 

regions play an important part in the biology of the protein. They can contain functional domains such as 

protein-interaction sites, cell compartment targeting signals, and sites for post-translational modification 
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or cleavage; large parts of insulin receptor substrates are unstructured for example, as is the entirety of 

Tau, a brain protein implicated in the pathology of Alzheimer’s Disease. Linear Motifs (LM) are typically 

between 3 and 10 amino acids in length, and have degrees of variability in their sequences, requiring quite 

a high level of sensitivity to distinguish LM patterns from background noise. The new reference set 

includes only experimentally-verified verified functional motifs, extracted from the Eukaryotic Linear 

Motif (ELM – Puntervoll 2003) database, refined and confirmed manually (Perrodou 2008).  

Among BAliBASE’s most touted advantages is its “expertly refined” and highly accurate database 

(Thompson 2005). However the reliance on expert validation introduces elements of subjectivity and 

therefore bias (Blackshields 2006), as well as increasing the time and labor required for maintenance and 

expansion of the database. The search for fully automated processes led to OXBench, PREFAB, 

HOMSTRAD, and SABmark, discussed below. 

Reference 1 Equidistant sequences, divided by length and variability
Reference 2 Families with one or more highly divergent sequences
Reference 3 Divergent subfamilies
Reference 4 Sequences with large N/C terminal extensions
Reference 5 Sequences with large internal insertions
Reference 6 Sequences with transmembrane regions
Reference 7 Sequences with repeats
Reference 8 Sequences with inverted domains

Thompson 2005

Reference 9 Short/Linear Motifs, experimentally verified
Perrodou 2008

BAliBASE Latest Version Reference Categories 

 
Table 1 – BAliBASE Latest Version – Reference Categories 

OxBench 

OxBench’s data set incorporates the 3Dee database of protein structural domains, which contains 

definitions for proteins of experimentally-determined three dimensional structures from the Protein Data 

Bank (PDB) up to July 1998, about 729 domain families and 9,015 domains. These are then filtered: low-

resolution structures, domains with less than 40 amino acid residues, single-member families, domains 

with uncertain secondary structure, and structures with low stereochemical quality as assessed by 

PROCHECK are all removed from the data set, as are highly similar domains, which provide limited 

information. Taking out multiple segment domains leaves 1,1168 domains in 218 families. Structural 

similarity is assayed as automatically as possible through the STAMP multiple structure comparison 

algorithm (Russell 1992), cases on the high or low extremes of similarity were inspected by human 

experts and the algorithm adjusted. Domains are then organized into three datasets: Master, Full, and 
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Extended. The Master set comprises the core sequences with known structure, divided into subcategories 

based on sequence identity and similarity. The Full set adds available full-length sequence data, while 

Extended adds similar sequences extracted from the SWALL sequence database (Raghava 2003). See 

Figure 1 below for a schematic representation. It has been reported that some tests in the Extended set are 

too large for the more computationally-intensive programs: in a recent study TCoffee could only align 

235/276 test cases from the Extended set, while Align-m could only align 107 (Blackshields 2006).   

 
Figure 1 – Flowchart outlining relationships between OXBench datasets and subsets. Source: Raghava 2003 

HOMSTRAD 

HOMSTRAD incorporates structural information from the Protein Data Bank (PDB) and SCOP as 

well as sequence information from Pfam, a manually compiled database of homologous protein sequence 

familieis. SCOP is based on structures from the PDB, classified by experts into hierarchical categories 

(Stebbings and Mizuguchi 2004). The original HOMSTRAD incarnation (Mizuguchi 1998) only 

comprised of the structural information from the PDB; integration with the Pfam sequence database was 

added in 2001, expanding the relevance of the benchmark. All HOMSTAD sequences were scored against 

Pfam profile hidden Markov models; highly-scoring homologous sequences were aligned with the 

HOMSTRAD structures using FUGUE (de Bakker 2001). The newest version of HOMSTRAD stores 

core family information in a MySQL database, allowing for increased flexibility in updating the structural 

database as more data becomes available as well as faster access times and lower memory requirements 

(Stebbings and Mizuguchi 2004). While not explicitly intended to benchmark MSA programs, it is often 

used for this purpose (Wallace 2006, Blackshields 2006, Pei 2008).  
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PREFAB 

PREFAB was developed in order to reduce the need for expert intervention in the database creation 

process of such databases as BAliBASE and provide a fully automated protocol for benchmarking the 

accuracy of multiple sequence alignment programs. First, pairs of proteins are aligned structurally without 

incorporating sequence information. A query is then sent to a database for each sequence to obtain close 

homologues, and the entire set of resultant proteins is aligned using an MSA method. The structural 

alignment accuracy was assayed using test sets from the FSSP database (Holm and Sander 1998) as well 

as realigned structures using the Combinatorial Extension (CE) aligner (Shindyalov and Bourne 1998); 

only pairs that had considerable agreement between the two methods were kept, in order to reduce 

“questionable and ambiguous structural alignments” (Edgar 2004). Subsequently, the full-chain sequence 

of each structure was used to launch a PSI-BLAST search of the NCBI non-redundant protein sequence 

database, hits were filtered down to 80% maximum identity between pairs, and 24 homologous proteins 

selected at random. Thus the original pair and their 24 homologous sequences are combined into sets of 

<50 sequences; this number is arbitrary and is only limited by the computational power available, which 

needs to be considerably high for the more demanding MSA algorithms such as TCoffee. The accuracy of 

the alignment is tested only between the original pair of sequences (Edgar 2004). 

SABmark 

The Sequence Alignment Benchmark (Van Walle 2005) focuses only on dissimilar sequences, with 

very low to intermediate similarity (0-50% identity). In practice, the performance of most programs 

converges with increasing sequence similarity and offers little opportunity for improvement (Sauder 

2000, Blackshields 2006), and so SABmark illuminates the region of highest difference between 

programs. Sequences are grouped into two alignment sets: Twilight Zone, with sequences of very low 

similarity, and Superfamilies, with sequence of low similarity. Sequences are matched with high-quality 

structures from the SCOP database (Murzin 1995), continually updated to reflect new releases. (Von 

Walle 2005) 
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Overview of Global MSA Programs 

ClustalW 

Still the most popular method for multiple sequence alignment, ClustalW was first introduced in 

1994. Clustal W was released as an update to the venerable Clustal program; the ‘W’ stands for ‘weights’ 

and is homage to the program’s distinguishing characteristic. While previous MSA algorithms 

incorporated single-weight matrices applying equal phylogenetic divergence to all sequences, ClustalW 

incorporated the Neighbor Joining weighting method to assign heavier weights to divergent sequences 

than more redundant ones, correcting for reduced sampling at more distant evolutionary distances, 

correcting for what is known as the parameter choice problem (Thomson 1994). This increases the 

sensitivity of the test greatly (Thomson 1994), but such weighted algorithms will tend to overweight 

erroneous sequences, suggesting biological relationships when in fact there are none (Brutlag 2007). 

Clustal W uses gaps to optimize alignment, and introduced position-specific gap penalties in order to 

reflect the biological significance of gaps in areas important structurally or functionally: gaps in regions 

of limited functional or structural consequence incur a lower penalty than gaps in important folding 

regions. Clustal W, similar to more recent progressive algorithm techniques, first generates a guide tree 

based on sequence similarity as calculated through pairwise alignment using the BLOSUM distance 

matrix, then assigns the weights as described above, weighting more distant relationships. The program 

then progressively aligns pairs of sequences at each node of the tree incorporating the position-specific 

weights and gap penalties. This “greedy” property of the algorithm means that if an error is made in the 

early stages of the alignment, its effect is compounded at every level of the tree (Thomson 1994, 

Blackshields 2006, Brutlag 2007).  

Since its introduction over 14 years ago, limited improvements and modifications have been made to 

the ClustalW algorithm, and it has been surpassed by modern algorithms in terms of either speed, 

accuracy, or both (Edgar and Batzoglou 2006). ClustalX is an updated version of the original program 

with limited algorithmic improvements but with a new graphical user interface and various usability 

improvements (Thompson 1997). Lack of program updates has not stopped development of new versions 

of the software to allow operation on various platforms: while Clustal was originally written for MS-

DOS, Clustal-W and -X have recently been rewritten in C++. ClustalX version 2.0 boasts increased 

compatibility with newer OS’s, a streamlined process for future improvements to the algorithm and code, 

and cessation of reliance on the NCBI’s Vibrant toolbox, which was used to develop the original Clustal 

X graphical user interface but is no longer supported (Larkin 2007). Part of ClustalW’s enduring success 

is certainly due to its low memory requirements, despite that when compared with modern programs, 

ClustalW is both less accurate and less scaleable (Edgar and Batzoglou 2006).  
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Figure 2 – B: there are relatively more alignment gaps in the hydrophilic exterior than the 
hydrophobic interior of globular proteins: position-specific gap penalties are higher for regions with 
hydrophobic residues and lower for regions with hydrophilic residues. C: Figure illustrating the increased 
weight applied to underrepresented families in weighted MSA such as ClustalW. (Do and Katoh 2008) 

T‐Coffee 

Similar to ClustalW, T-Coffee first uses weighted pairwise comparisons of sequences to compile an 

initial primary library. TCoffee combines local and global alignment techniques: local alignments are 

created using Lalign and a global alignment using ClustalW. TCoffee is a consistency-based algorithm: 

alignments are based both on the sequences to be aligned, pair by pair, as well as on how all the 

sequences align with each other. TCoffee includes in a pairwise alignment between sequences A&B the 

information from a third sequence C: for each matched residue x in A and y in B, there is an alignment 

with a residue z in C. The alignments A-C and B-C together constitute an alignment A-B; these scores are 

taken into account when building the initial guide tree. (Pirovano and Heringa 2008). Figure 3, Figure 4 

and Figure 5 show the development of the initial library as well as its extension using alignments with a 

third sequence as described above.  

The library is re-weighted using its own consistency and used as a position-specific substitution 

matrix to carry out progressive MSA, through a similar mechanism as ClustalW and other progressive 

methods. In particular, a neighbor-joining distance matrix tree is computed in order to guide progressive 

pair-wise alignments leading to an overall MSA (Notredame 2000).  

TCoffee has among the highest accuracy of modern MSA methods, but is computationally intensive 

and becomes impractical at alignments involving more than 100 sequences (Edgar and Batzoglou 2006). 

Compared to ProbCons, with typically higher accuracy scores, TCoffee has the important advantage of 

incorporating extensions, in the form of 3DCoffee/Expresso and M-Coffee, both discussed separately 

below, under Structure-Based Methods and Consensus Methods, respectively.  
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Figure 3 –Process of formation of TCoffee’s 
primary library: structural templates are 
first identified, mapped onto sequences, and 
aligned using a template alignment method 
such as SAP. This template is then used to 
guide the alignment of the original 
sequences leading to the final MSA. Source: 
Notredame 2008 

 

 

 

 
Figure 4 – Figure illustrating the use of consistency-based scoring, as in TCoffee. Source: Do & Katoh 2005. 

 

 
Figure 5 – Diagram showing TCoffee’s use of third sequences to refine the library used as a guide tree for dynamic 
programming as compared to the regular progressive alignment strategy. Source: Notredame 2003 
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ProbCons 

This program often obtains the highest accuracy scores on benchmarks (Blackshields 2006), but 

suffers from the same drawbacks as TCoffee: high computational requirements, because both are based 

on a consistency-based approach (Edgar and Batzoglou 2006). ProbCons can both be downloaded or 

utilized as web server application. ProbCons starts by calculating a posterior probability for each residue 

match within a pairwise comparison, using a pairwise Hidden Markov Model (HMM) and expectation 

maximization (EM). From this the program obtains the alignment that maximizes the “expected 

accuracy,” and similar to TCoffee uses third sequences to further refine its alignment. Dynamic 

programming is then used to drive at the final pairwise alignment, which is incorporated into a guide tree 

and used in a progressive protocol to compute the final MSA.  

While computationally intensive, ProbCons incorporates flexibility in its approach: several steps in 

the computation are iterative, and the user can increase iterations to drive at a more refined guide tree and 

therefore final MSA. These include the initial calculation of posterior probability, from a default 2 

iterations up to a maximum of 5, iterative refinement of alignments, from a default of 1000 to a max of 

1000, and pretraining expectation maximization to optimize gap penalties to closely relate to biological 

significance. (Pirovano and Heringa 2008) 

In various tests, ProbCons has been shown to be the most accurate single algorithm (Blackshields 

2006, Essoussi 2008, Pei 2008), but can be outperformed by certain structure-based algorithms such as 

Expresso (Armougom 2006), or consensus-based programs such as M-Coffee (Wallace 2006) that 

integrate various different approaches.  

MAFFT, MUSCLE, and MUSCLE‐P 

These programs are typically faster and more accurate than ClustalW, and offer a good tradeoff 

between accuracy and computational demand as compared to ProbCons and TCoffee. Adding to the 

versatility, MUSCLE can be operated through the web server as well as a downloadable application.  

MUSCLE avoids the time-consuming dynamic programming involved in the creation of the guide 

tree important in ClustalW or TCoffee, instead employing iterative refinement procedures that produce 

high quality alignments at much higher speeds. First, sequences are ordered according to continuous 

amino acid segments of length k they share with other sequences in the set, these are termed k-mers. 

UPGMA is used to calculate the guide tree, and a MSA is created following the tree’s progression. This 

MSA is used to construct a new tree through an iterative mechanism, applying the Kimura distance 

correction multiple times until no further improvement is seen. This final MSA is used to refine and drive 

at the last alignment; the program iterates through each node of the tree, repeating the alignment problem 

using each updated MSA, keeping the one with the highest alignment score (Pirovano and Heringa 2008). 
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Furthermore, MAFFT and MUSCLE are both scaleable; the user can reduce accuracy in favor of 

speed for high-throughput applications (Edgar and Batzoglou 2006). The user  can decide whether include 

or exclude individual stages outlined above, can give the program a given time constraint within which to 

make its alignment, place limits on the iteration of k-mer-based realignment, or use “anchor optimization” 

by dividing an alignment problem into vertical blocks and aligning each column separately with its own 

associated profile (Pirovano and Heringa 2008).  

Consensus‐Based Global MSA 

M‐Coffee 

M-Coffee (Wallace 2006) draws information from a combination of MSA programs and uses T-

Coffee to drive at a consensus that incorporates every one. Similar to the process used in incorporating 

3D-structural information into the TCoffee library in 3D-Coffee, M-Coffee generates entries in the library 

from different MSA packages. Weights are assigned across the packages based on four different 

elements: variance/covariance, Altchul Carrillo Lipman (ACL), Thompson Higgins Gibson (THG), and 

accuracy (ACC) weights. Variance, covariance, and accuracy is determined based on HOMSTRAD 

reference alignments. ACL and THG are tree-based methods and assign higher weights to objects closer 

to the root of the tree; closer objects provide better estimates of the root. The result is that more accurate 

methods, as measured by these four criteria, count more towards the final MSA than less accurate 

methods.  

M-Coffee combining the top eight individual programs was found to outperform all individual 

methods on every category of HOMSTRAD and Prefab (more than 1400 total), as well as 6/10 

BAliBASE reference sets. On average, M-Coffee is twice as likely to deliver most accurate MSAs than 

the best individual methods (Wallace 2006). For full results see Table 5. 
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Q  and TC scores and times on BAliBASE

MUSCLE 0.896 0.747 97
MUSCLE‐p 0.883 0.727 52

T‐Coffee 0.882 0.731 1500

NWNSI 0.881 0.722 170
CLUSTALW 0.86 0.69 170

FFTNS1 0.844 0.646 16

Method CPU Time 
(sec)

Q TC

The Q (quality) and TC (total column) scores for each method using BAliBASE 
and the total CPU time in seconds are given. TC is # of correctly aligned 
columns divided by the number of columns in the alignment, it is equal to Q 
for pairwise alignments as in PREFAB and SABmark. Source: Edgar 2004  

Table 2 

Q  scores and times on PREFAB

All 0–20% 20–40% 40–70% 70–100%
MUSCLE 0.645 0.473 0.813 0.937 0.98 17000
MUSCLE‐p 0.634 0.46 0.802 0.942 0.985 2000
T‐Coffee 0.615 0.464 0.795 0.935 0.976 1000000
NWNSI 0.615 0.448 0.772 0.93 0.939 14000
FFTNS1 0.591 0.423 0.756 0.931 0.938 1000
CLUSTALW 0.563 0.382 0.732 0.916 0.93 33000

The average Q score for each method over all PREFAB alignments (All), and the total CPU time in 
seconds are given. The remaining columns show average Q scores on subsets in which the structure 
pairs fall within the given pairwise identity ranges. Note that T‐Coffee required 10 CPU days to 
complete the test, compared with <5 h for MUSCLE and ~30 min for MUSCLE‐p. Source: Edgar 2004

Method Pairwise Identity CPU Time 
(sec)

 
Table 3 

Q  scores and times on SABmark

All Superfamily Twilight
MUSCLE 0.43 0.523 0.249 1886

T‐Coffee 0.424 0.519 0.237 5615

MUSCLE‐p 0.416 0.511 0.23 304

NWNSI 0.41 0.506 0.223 629

CLUSTALW 0.404 0.498 0.22 206

FFSNT1 0.373 0.467 0.19 75

Method Subset CPU Time 
(sec)

The average Q score for each method over all SABmark subsets (All) and the total CPU time in 
seconds are given. The remaining columns show average Q scores on the two subsets of the 
SABmark database, divided between very low identity (Twilight) and low identity (Superfamily) 
families. Source: Edgar 2004  

Table 4 
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Structure‐based Global MSA 

Expresso and 3D‐Coffee    

The functionality of Expresso (Armougom 2006) was accessible as early as 2004 via 3D-Coffee, an 

extension of the TCoffee engine (O’Sullivan 2004). The original 3D-Coffee interface required the user to 

input explicit structures to be considered along with sequences whereas Expresso uses a BLAST search of 

the PDB database to automatically locate suitable structural templates, greatly simplifying and 

streamlining the alignment process (Armougom 2006). 

Structural information was incorporated into TCoffee using three methods: Fugue, SAP, and 

LSQman. 3D-Coffee submits sequence/structure pairs to the Fugue server1 and automatically retrieves the 

corresponding pair-wise alignments. SAP pair-wise alignments are computed based on non-rigid structure 

superposition whereas LSQman on the other hand computes pairwise alignments based on rigid structure 

superposition. The SAP and LSQman alignments are highly accurate, so much so that 3D-Coffee assigns 

the highest possible weight to them, but only the threading method Fugue is able to incorporate single 

structures, i.e. when structural information is only available for one out of the pair of sequences being 

compared. (O’Sullivan 2004). 

When combined with the Fugue threading algorithm given a single structure, TCoffee-Fugue (TC-

Fugue) outperformed TCoffee by 4% and ClustalW by over 8% in MSA of a set of 39 related proteins; 

improvements increased with higher ratios of structures:sequences. With two structures, TC-LSQman and 

TC-SAP could be compared; results yielded the same direct 4% improvement for TC-Fugue, a slightly 

higher 5% improvement for TC-LSQ, a considerable 8.5% improvement over TC for TC-SAP and a 

10.3% direct improvement for the consensus method incorporating all three methods, TCoffee-3D. 

Induced improvement, which is the improvement in accuracy of sequence alignments other than the 

protein whose structure was provided, followed a similar patter, with the combination method TC-3D 

having the highest accuracy, and both methods showed modest increases in improvement with more 

structures incorporated. Of note is the small and at times non-significant induced improvements, meaning 

that these methods are not able to extrapolate the structural information of a given sequence to 

neighboring sequences; the relationship between structures and sequences is not one of diminishing 

returns but is linear (O’Sullivan 2004). 

  

                                                      
1 http://www.cryst.bioc.cam.ac.uk/˜fugue/  
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PRALINE and SPEM 

PRALINE (Simossis and Heringa 2005) and SPEM (Zhou and Zhou 2005) are two different 

programs that use PSI-BLAST to search for homologous sequences and build a structural profile for each 

sequence, to aid in computing the final MSA, taking into account predicted secondary structure as well as 

sequence homology. For proteins without PDB structures, PRALINE can incorporate DSSP predicted 

secondary structure information, or, when no such information is available, a choice of seven secondary 

strcutre prediction methods to arrive at a hypothesized structure (Pirovano and Heringa 2008) 

Both PRALINE and SPEM are important MSA programs in their own right, but their distinguishing 

characteristic is incorporation of structure information. SPEM is a rather inflexible program in terms of 

user-specification, but follows a similar algorithm to PRALINE when incorporating structural 

information: the difference is that SPEM uses dynamic programming to apply structure-dependent gap 

penalties, while PRALINE adds the use of structure-specific residue exchange matrices. Similar to both 

TCoffee and ProbCons, both PRALINE and SPEM make considerable use of consistency-based scoring 

(see )(Pirovano and Heringa 2008) 

 Table 6 is a comparison using the HOMSTRAD benchmark set, showing considerable improvements 

over TCoffee and MUSCLE when PRALINE is combined with PSI-BLAST as well as prediction 

methods PSIPRED and YASPIN. The gains are more pronounced at lower identity levels, as is expected 

(Simossis and Herringa 2005). PRALINE and SPEM’s use of an external program (PSI-BLAST) greatly 

increases running time and processing power; these programs are primarily useful for limited numbers of 

proteins (Edgar and Batzoglou 2006).   

Column scores based on HOMSTRAD alignment cases
Overall 
(%)

0–30 (%) 30–60 (%)
60–100 
(%)

PRALINEBASIC 63.8 38.7 68.5 95.5 –

PRALINEBASIC‐YASPIN 68 45.3 72.2 96.3 0.106

PRALINEBASIC‐PSIPRED 67.4 43.5 72.1 95.9 0.337

PRALINEPSI 70.2 50.2 73.6 96.7 0.025

PRALINEPSI‐YASPIN 70 49.7 73.6 96.5 0.042

PRALINEPSI‐PSIPRED 70.1 50.2 73.5 96.7 0.014

TCOFFEEv2.03 67.6 44 72.2 95.8 0.237
MUSCLEv3.51 67.5 45 71.6 96.3 0.461

The signif icance of the results (P -value from Kolmogorov–Smirnov test) is calculated w ith regard 
to the PRALINEBASIC method. The column scores are the percentage correctly aligned columns w ith 
regard to the HOMSTRAD structure alignment. Source: Simossis and Heringa 2005

Column score

P  (0–100)Alignment method

 
Table 6 – Column scores based on HOMSTRAD, comparing PRALINE, TCoffee, and MUSCLE 
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Conclusion and Future Directions 

Performance Differences between MSA Programs 

As is clear from the tables presented above, there can be significant differences between programs in 
the accuracy of their determined multiple sequence alignment. In particular, especially at lower levels of 
identity, consistency-based and structure-based methods handily outperform classic methods such as 
ClustalW, and tend to modestly outperform iterative methods such as MUSCLE.  ProbCons is generally 
the winner in most accuracy-based tests (Blackshields 2006, Essoussi 2008). More drastic are the 
differences between programs in processing time: while the most accurate algorithms are marginally more 
accurate than the average, they often require orders of magnitude more time and processing power.  

Future Directions 

The trend of including all available data in determining sequence homology will continue: as more 
structural and functional information is made available, and more computing power increases the ability 
to handle complex algorithms, programs that incorporate more and more data will be able to more closely 
approximate true biological relationships. There will be also be better utilization of phylogenetic 
relationships and incorporation of models of protein sequence evolution. Existing data will be verified 
and corrected, preventing uncertainties in structural data to cloud sequence alignment. Furthermore, there 
will be a trend away from progressive methods towards considering all sequences at once, clearly an 
impossible computational problem today, but one that is being solved step-by-step through methods such 
as consistency-based alignment.  

The Biologist’s Choice 

Recent developments have included the development of “consensus methods” such as M-Coffee 
(Wallace 2006) as well as template-based methods such as Expresso (Armougom 2006). M-Coffee uses a 
combination of MSA programs to arrive at a consensus that incorporates every one, and is shown to be 
considerably more accurate than the most accurate single program (Wallace 2006). Given that each 
program has its own strengths and weaknesses, M-Coffee is an easy way for the biologist to apply widely 
different perspectives to the same problem. Structure-based methods such as Expresso take advantage of 
the fact that structures evolve slower than sequences, meaning that even when sequences have diverged 
beyond recognition, structural-based homology based on 3D comparisons of protein folding can identify 
evolutionary relationships. This means mistakes in structural alignment would impact sequence alignment 
negatively, thus the role of the supervising biologist is paramount.  

The final choice of program hinges on the biologist’s criteria: if a fast response time is required, or if 
the sequence bank being analyzed is large, then MUSCLE and MAFFT are the best starting points. If the 
goal is accuracy without compromise, then a joint analysis using the best heuristics algorithm, ProbCons, 
as well as all available structure data, as in Expresso, is the best way forward. According to this analysis, 
there is limited scope for continuing to use ClustalW other than as a reference; other algorithms 
outperform it both in terms of speed and in terms of accuracy. TCoffee is a highly accurate program but 
its computational requirements are too onerous: reports of slow running times, failed tests and incomplete 
benchmark results are rife in the literature (Edgar 2004, Blackshields 2006). 
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